Jump to content

Fáìlì:Phanerozoic Carbon Dioxide.png

Page contents not supported in other languages.
Lát'ọwọ́ Wikipedia, ìwé ìmọ̀ ọ̀fẹ́

Phanerozoic_Carbon_Dioxide.png (586 × 409 pixel, ìtóbi faili: 62 KB, irú MIME: image/png)

This graph image could be re-created using vector graphics as an SVG file. This has several advantages; see Commons:Media for cleanup for more information. If an SVG form of this image is available, please upload it and afterwards replace this template with {{vector version available|new image name}}.


It is recommended to name the SVG file “Phanerozoic Carbon Dioxide.svg”—then the template Vector version available (or Vva) does not need the new image name parameter.

Àkótán

This figure shows estimates of the changes in carbon dioxide concentrations during the Phanerozoic. Three estimates are based on geochemical modeling: GEOCARB III (Berner and Kothavala 2001), Carbon-Oxygen-Phosphorus-Sulfur-Evolution COPSE (Bergman et al. 2004) and Rothman (2001). These are compared to the carbon dioxide measurement database of Royer et al. (2004) and a 30 Myr filtered average of those data. Error envelopes are shown when they were available. The right hand scale shows the ratio of these measurements to the estimated average for the last several million years (the Quaternary). Customary labels for the periods of geologic time appear at the bottom.

Direct determination of past carbon dioxide levels relies primarily on the interpretation of carbon isotopic ratios in fossilized soils (paleosols) or the shells of phytoplankton and through interpretation of stomatal density in fossil plants. Each of these is subject to substantial systematic uncertainty.

Estimates of carbon dioxide changes through geochemical modeling instead rely on quantifying the geological sources and sinks for carbon dioxide over long time scales particularly: volcanic inputs, erosion and carbonate deposition. As such, these models are largely independent of direct measurements of carbon dioxide.

Both measurements and models show considerable uncertainty and variation; however, all point to carbon dioxide levels in the past that have been signifcantly higher than they are at present. While the GEOCARB Carbon dioxide levels in the most part of the Phanerzoic Eon shows a fit and resulting climate sensitivity similar to todays values, the early Phanerozoic includes a global ice age during the Ordovician age combined with high atmospheric carbon contents based on the same project. There have been different speculations about the reasons but no acknowledged mechanism so far.

This figure was prepared by Robert A. Rohde from published data and is incorporated into the Global Warming Art project.

Image from Global Warming Art
This image is an original work created for Global Warming Art. Please refer to the Carbon Dioxide.png image description page for more information.
GNU head Ìyọ̀nda wà láti ṣe àwòkọ, láti pínkàkiri àti/tàbí ṣ'àtúnse ìwé yìí l'ábẹ́ àwọn ọ̀rọ̀ àdéhùn GNU Free Documentation License, Version 1.2 tàbí ìtẹ̀jáde ọjọ́ọwájú lát'ọwọ́ Free Software Foundation; láìsí àwọn Ẹsẹ Aláìyàtọ̀, láìsí àwọn Ọ̀rọ̀-ìwé Níwájú, àti láìsí Ọ̀rọ̀-ìwé Lẹ́yìn. Àwòkọ ìwé àṣẹ náà jẹ́ sísopọ̀ mọ́ abala tí àkọlé rẹ̀ jẹ́ GNU Free Documentation License.
w:en:Creative Commons
ìdárúkọ share alike
Fáìlì yìí wà lábẹ́ ìwé àṣẹ Creative Commons Ìdálórúkọ-Share Alike 3.0 Aláìkówọlé.
Ẹ ní ààyè:
  • láti pín pẹ̀lú ẹlòmíràn – láti ṣàwòkọ, pínkiri àti ṣàgbéká iṣẹ́ náà
  • láti túndàpọ̀ – láti mulò mọ́ iṣẹ́ míràn
Lábẹ́ àwọn àdéhùn wọ̀nyí:
  • ìdárúkọ – Ẹ gbọdọ̀ ṣe ọ̀wọ̀ tó yẹ, pèsè ìjápọ̀ sí ìwé-àṣe, kí ẹ sì sọ bóyá ìyípadà wáyé. Ẹ le ṣe èyí lórísi ọ̀nà tó bojúmu, sùgbọ́n tí kò ní dà bii pé oníìwé-àṣe fọwọ́ sí yín tàbí lílò yín.
  • share alike – Tó bá ṣe pé ẹ ṣ'àtúndàlú, ṣàyípadà, tàbí ṣ'àgbélé sí iṣẹ́-ọwọ́ náà, ẹ lè ṣe ìgbésíta àfikún yín lábẹ́ ìwé-àṣẹ kannáà tàbí tójọra mọ́ ti àtilẹ̀wa.
Àlẹ̀mọ́ ìwé àṣẹ yìí jẹ́ lílẹ̀mọ́ fáìlí yìí gẹ́gẹ́ bíi apá GFDL ìṣọdọ̀tun ìwé àṣẹ.


References

  1. Bergman, Noam M., Timothy M. Lenton, and Andrew J. Watson (2004). "COPSE: A new model of biogeochemical cycling over Phanerozoic time". American Journal of Science 304: 397–437.
  2. Berner, RA and Z. Kothavala (2001). "GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time". American Journal of Science 301: 182-204.
  3. Gradstein, FM and JG Ogg (1996). "A Phanerozoic time scale". Episodes 19: 3-5.
  4. Gradstein, FM, JG Ogg and AG Smith (2005) A geologic time scale 2004, Cambridge University Press ISBN 0521786738
  5. Rothman, Daniel H. (2001). "Atmospheric carbon dioxide levels for the last 500 million years". Proceedings of the National Academy of Sciences 99 (7): 4167-4171.
  6. Royer, Dana L., Robert A. Berner, Isabel P. Montañez, Neil J. Tabor, and David J. Beerling (2004). "CO2 as a primary driver of Phanerozoic climate". GSA Today 14 (3): 4-10. doi:10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2
  7. Veizer, J., Godderis, Y. & Francois. L.M., Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408, 698-701 (2000) [1]
  8. Nir J. Shaviv, Ján Veizer: Celestial driver of Phanerozoic climate?, Geological Society of America Vol. 13, Issue 7 (Juliy 2003), S. 4–10, Online (pdf 454 KByte)[2]

Notes

  1. All data except GEOCARB III appear on the 2004 geologic time scale (Gradstein et al. 2005). GEOCARB III appears on the Gradstein & Ogg (1996) time scale.
  2. All models are reported in terms of the ratio of past CO2 concentrations to "present" CO2 concentrations, where "present" represents some average value for the last few million years. To compare to direct measurements a value of 260 ppmv is chosen for the recent period, with an uncertainty of 10-15%.
  3. No models are capable of resolving changes faster than ~10 Myr.
  4. Measurements based on the interpretation of paleosols sometimes result in apparent CO2 concentrations < 0 ppmv. These were set to 0 ppmv.
  5. Different measurements in the Royer et al. compilation come from different authors and involve different techniques. As such the error bars are not necessarily comparable. For example, some sources may have included only statistical measurement error, whereas others may have included statistical and systematic errors. Other measurements report no uncertainty at all. Because of these factors, the error measurements were ignored when determining the 30 Myr measurement average.
Annotations
InfoField
This image is annotated: View the annotations at Commons

akole

Ṣafikun alaye ila kan ti ohun ti faili yii duro
Atmospheric CO₂ in parts per million by volume (ppmv) over the last half billion years.

Awọn nkan ṣe afihan ninu faili yii

depicts Èdè Gẹ̀ẹ́sì

copyright status Èdè Gẹ̀ẹ́sì

copyrighted Èdè Gẹ̀ẹ́sì

media type Èdè Gẹ̀ẹ́sì

image/png

Ìtàn fáìlì

Ẹ kan kliki lórí ọjọ́ọdún/àkókò kan láti wo fáìlì ọ̀ún bó ṣe hàn ní àkókò na.

Ọjọ́ọdún/ÀkókòÀwòrán kékeréÀwọn ìwọ̀nOníṣeÀríwí
lọ́wọ́01:16, 26 Oṣù Ògún 2019Àwòrán kékeré fún ní 01:16, 26 Oṣù Ògún 2019586 × 409 (62 KB)SaippuakauppiasInverted figure and axes, so that time evolves from left to right.
21:38, 25 Oṣù Èrèlé 2006Àwòrán kékeré fún ní 21:38, 25 Oṣù Èrèlé 2006584 × 407 (31 KB)Merikanto~commonswikiClass Paleoklimatology, Phanerozoic Carbon Dioxide curve.

Kò sí ojúewé tó únlo fáìlì yìí.

Ìlò fáìlì káàkiri

Àwọn wiki míràn wọ̀nyí lo fáìlì yìí:

Metadata