# Nọ́mbà áljẹ́brà

Lọ sí: atọ́ka, àwárí

Ninu mathematiiki, nomba aljebra je nomba tosoro kan to je wewe polynomial tikoje-odo ni oniyekiye eyo kan pelu oniipin (tabi lonibamu, odidi) afisodipupo. Awon nomba bi $\pi$ ti won ki se ti aljebra ni won so pe won je transcendental; Bi gbogbo won nomba gidi ni won je transcendental.

## Àwọn àpẹrẹ

• Àwọn nọ́mbà gidi, tí wọ́n jẹ́ gbígbékàlẹ̀ bíi ìpín nọ́mbà odidi méjì a àti b, tí b kò dọ́gba mọ́ òdo, nitelorun ìtumọ̀ ọkè nítorí $x = a/b$ ni wẹ́wẹ́ $bx-a$.[1]
• Àwọn nọ́mbà $\scriptstyle\sqrt{2}$ àti $\scriptstyle\sqrt[3]{3}/2$ jẹ́ ti áljẹ́brà nítorípé àwọn ni wẹ́wẹ́ àwọn polynomials $x^2 - 2$ àti $8x^3 - 3$, nitelentele.
• Ipin oniwura $\phi$ je ti aljebra nitoripe o je wewe kan polynomial $x^2 - x - 1$.
• Awon nomba kiko (those that, starting with a unit, can be constructed with straightedge and compass, e.g. the square root of 2) je ti aljebra.
• Awon quadratic surd (awon wewe quadratic polynomial $ax^2 + bx + c$ pelu awon odidi afisodipupo $a$, $b$, ati $c$) je nomba onialjebra. Ti quadratic polynomial ba je monic $(a = 1)$ nigbana awon wewe je quadratic integer.
• Awon nomba odidi Gauss: awon nomba tosoro $a+bi$ nibi ti ati $a$ ati $b$ je odidi na tun je quadratic integers.

## Awon ini nomba aljebra

Fáìlì:Algebraicszoom.png
Algebraic numbers coloured by degree.
• Akojopo awon nomba aljebra je siseeka (enumerable).[3]
• Bi be, akojopo awon nomba aljebra ni iwon Lebesgue odo (gege bi akojopoabe fun awon nomba tosoro)

## Itokasi

1. Some of the following examples come from Hardy and Wright 1972:159-160 and pp. 178-179
2. Also Liouville's theorem can be used to "produce as many examples of transcendentals numbers as we please," cf Hardy and Wright p. 161ff
3. Hardy and Wright 1972:160