Nẹ́ọ̀nù

Lát'ọwọ́ Wikipedia, ìwé ìmọ̀ ọ̀fẹ́
Lọ sí: atọ́ka, àwárí
Nẹ́ọ̀nù
10Ne
He

Ne

Ar
fluorínìnẹ́ọ̀nùsódíọ̀mù
Ìhànsójú
colorless gas exhibiting an orange-red glow when placed in a high voltage electric field

Neon gas in a discharge tube, so-called neon light.

Spectral lines of neon in the visible region
Àwọn ìdámọ́ wíwọ́pọ̀
Orúkọ, àmì-ìdámọ́, nọ́mbà nẹ́ọ̀nù, Ne, 10
Ìpèlóhùn /ˈnɒn/
Ẹ̀ka ẹ́límẹ̀nti ẹ̀fúùfù abíire
Ẹgbẹ́, àsìkò, àdìpò 182, p
Ìwúwo átọ́mù 20.1797(6)
Ìtòléra ẹ̀lẹ́ktrónì [He] 2s2 2p6
2, 8
Electron shells of neon (2, 8)
Ìtàn
Ìsọtẹ́lẹ̀ William Ramsay (1897)
Ìwárí William Ramsay & Morris Travers[1] (1898)
Ìyàsọ́tọ̀ àkọ́kọ́ William Ramsay & Morris Travers[2] (1898)
Physical properties
Phase ẹ̀fúùfù
Density (0 °C, 101.325 kPa)
0.9002 g/L
Liquid density at b.p. 1.207[3] g·cm−3
Melting point 24.56 K, -248.59 °C, -415.46 °F
Boiling point 27.07 K, -246.08 °C, -410.94 °F
Triple point 24.5561 K (-249°C), 43[4][5] kPa
Critical point 44.4 K, 2.76 MPa
Heat of fusion 0.335 kJ·mol−1
Heat of vaporization 1.71 kJ·mol−1
Molar heat capacity 5R/2 = 20.786 J·mol−1·K−1
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 12 13 15 18 21 27
Atomic properties
Oxidation states 0
Ionization energies
(more)
1st: 2080.7 kJ·mol−1
2nd: 3952.3 kJ·mol−1
3rd: 6122 kJ·mol−1
Covalent radius 58 pm
Van der Waals radius 154 pm
Miscellanea
Crystal structure face-centered cubic
Nẹ́ọ̀nù has a face-centered cubic crystal structure
Magnetic ordering diamagnetic[6]
Thermal conductivity 49.1x10-3  W·m−1·K−1
Speed of sound (gas, 0 °C) 435 m·s−1
Bulk modulus 654 GPa
CAS registry number 7440-01-9
Àwọn ísótòpù dídúró jùlọ
Main article: Àwọn ísótòpù nẹ́ọ̀nù
iso NA half-life DM DE (MeV) DP
20Ne 90.48% 20Ne is stable with 10 neutrons
21Ne 0.27% 21Ne is stable with 11 neutrons
22Ne 9.25% 22Ne is stable with 12 neutrons
· r

Nẹ́ọ̀nù ni ẹ́límẹ̀ntì kẹ́míkà kan tó ní àmí-ìdámọ̀ Ne àti nọ́mbà átọ̀mù 10. Ó wà nínú ẹgbẹ́ 18 (àwọn ẹ̀fúùfù abíire) lórí tábìlì ìdásìkò àwọn ẹ́límẹ̀ntì. Lábẹ́ àwọn ìṣẹ̀lẹ̀ déédé nẹ́ọ̀nù jẹ́ ẹ́fúùfù oníátọ̀mùkan aláìláwọ̀, aláìlóòórùn, ó jẹ́ ìdá méjì nínú mẹ́ta ìjẹ́kíki afẹ́fẹ́. Ó jé wíwárí (papọ̀ mọ́ kríptónì àti ksẹ́nọ́nù) ní 1898 gẹ́gẹ́bí ìkan nínú àwọn ẹ́límẹ̀ntì àìgbéra tósọ̀wọ́n tó ṣẹ́kù nínú afẹ́fẹ́ gbígbẹ, lẹ́yìn tí nítrójìn, ọ́ksíjìn, árgọ̀nù àti dìọ́ksídì kárbọ̀nù ti jẹ́ yíyọ kúrò. Nẹ́ọ̀nù ni ó jẹ́ èkejì nínú àwọn ẹ̀fúùfù àṣọ̀wọ́n mẹ́tẹ̀ẹ̀ta tó jẹ́ wíwárí, ó sí jẹ́ dídámọ̀ kíákíá bíi ẹ́límẹ̀ntì tuntun nítorí ìgbàjá-àwọ̀ ìtúsíta pupa rẹ̀. Orúkọ rẹ̀ wá láti ọ̀rọ̀ èdè Grííkì tó túmọ̀sí "ohun tuntun." Nẹ́ọ̀nù jẹ́ aláìgbéra bíi kẹ́míkà, kò sì lè dá àdàpọ̀ kẹ́míkà aláìní-àgbérù.

During cosmic nucleogenesis of the elements, large amounts of neon are built up from the alpha-capture fusion process in stars. Although neon is a very common element in the universe and solar system (it is fifth in cosmic abundance after hydrogen, helium, oxygen and carbon), it is very rare on Earth. It composes about 18.2 ppm of air by volume (this is about the same as the molecular or mole fraction), and a smaller fraction in the crust. The reason for neon's relative scarcity on Earth and the inner (terrestrial) planets, is that neon forms no compounds to fix it to solids, and is highly volatile, therefore escaping from the planetesimals under the warmth of the newly-ignited Sun in the early Solar System. Even the atmosphere of Jupiter is somewhat depleted of neon, presumably for this reason.

Neon gives a distinct reddish-orange glow when used in either low-voltage neon glow lamps or in high-voltage discharge tubes or neon advertising signs.[7][8] The red emission line from neon is also responsible for the well known red light of helium-neon lasers. Neon is used in a few plasma tube and refrigerant applications but has few other commercial uses. It is commercially extracted by the fractional distillation of liquid air. It is considerably more expensive than helium, since air is its only source.


Itokasi[àtúnṣe | àtúnṣe àmìọ̀rọ̀]

  1. Ramsay, William, Travers, Morris W. (1898). "On the Companions of Argon". Proceedings of the Royal Society of London 63 (1): 437–440. doi:10.1098/rspl.1898.0057. 
  2. "Neon: History". Softciências. Retrieved February 27, 2007. 
  3. Hammond, C.R. (2000). The Elements, in Handbook of Chemistry and Physics 81st edition. CRC press. p. 19. ISBN 0849304814. http://www-d0.fnal.gov/hardware/cal/lvps_info/engineering/elements.pdf. 
  4. Preston-Thomas, H. (1990). "The International Temperature Scale of 1990 (ITS-90)". Metrologia 27: 3–10. Bibcode 1990Metro..27....3P. doi:10.1088/0026-1394/27/1/002. http://www.bipm.org/en/publications/its-90.html. 
  5. "Section 4, Properties of the Elements and Inorganic Compounds; Melting, boiling, triple, and critical temperatures of the elements". CRC Handbook of Chemistry and Physics (85th edition ed.). Boca Raton, Florida: CRC Press. 2005. 
  6. Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
  7. Coyle, Harold P. (2001). Project STAR: The Universe in Your Hands. Kendall Hunt. pp. 464. ISBN 978-0-7872-6763-6. http://books.google.com/?id=KwTzo4GMlewC&pg=PA127. 
  8. Kohmoto, Kohtaro (1999). "Phosphors for lamps". In Shionoya, Shigeo; Yen, William M.. Phosphor Handbook. CRC Press. pp. 940. ISBN 978-0-8493-7560-6. http://books.google.com/?id=lWlcJEDukRIC&pg=PA380.